数据采集的基本原理
在计算机广泛应用的今天,雷电流多少钱,数据采集的重要性是十分显著的。它是计算机与外部物理世界连接的桥梁。各种类型信号采集的难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多的实际的问题要解决。
假设对一个模拟信号x(t)每隔Δt时间采样一次。时间间隔Δt被称为采样间隔或者采样周期。它的倒数1/Δt被称为采样频率,单位是采样数/每秒。t=0,Δt,2Δt,3Δt……等等,x(t)的数值就被称为采样值。所有x(0),xΔt),x(2Δt)都是采样值。根据采样定理,很低采样频率必须是信号频率的两倍。反过来说,如果给定了采样频率,那么能够正确显示信号而不发生畸变的很大频率叫做奈奎斯特频率,它是采样频率的一半。如果信号中包含频率**奈奎斯特频率的成分,信号将在直流和奈奎斯特频率之间畸变。
采样率过低的结果是还原的信号的频率看上去与原始信号不同。这种信号畸变叫做混叠(alias)。
采样的结果将会是低于奈奎斯特频率(fs/2=50Hz)的信号可以被正确采样。而频率**50HZ的信号成分采样时会发生畸变。分别产生了30、40和10Hz的畸变频率F2、F3和F4。计算混频偏差的公式是:
混频偏差=ABS(采样频率的整数倍-输入频率)
电流数据采集
工频50Hz下的电压电流波形中包含有若干频率的杂波,根据波形数据计算出电压电流的频率,目前常用的是快速傅里叶变换(FFT)。
快速傅里叶变换(fast Fourier transform)是1965年由J.W.库利和T.W.图基提出的,是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的,简称FFT。
FFT的基本思想是把原始的N点序列,依次分解成一系列的短序列。充分利用DFT计算式中指数因子所具有的对称性质和周期性质,进而求出这些短序列相应的DFT并进行适当组合,达到删除重复计算,雷电流哪家好,减少乘法运算和简化结构的目的。特别是被变换的抽样点数N越多,雷电流报价,FFT算法计算量的节省就越显著。
数据采集
信号采集模块绝大多数集中在采集模拟量、数字量、热电阻、热电偶,辽宁雷电流,其中热电阻可以认为是非电量,其实本质上还是要用电流驱动来采集,其中模拟量采集卡和数字量采集卡用得是比较广泛的。因为信号采集模块对环境的适应能力更强,可以应对各种恶劣的工业环境。假如在比较好的现场或者实验室,如学校的实验室,就可以使用USB/PCI这种采集卡。和常见的内置信号采集模块不同,外置信号采集模块一般采用USB接口和1394接口,因此外置信号数据采集模块主要指USB采集卡和1394采集卡。